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Abstract - For many applications of radar and sen-
sor based �ltering, simulations can not represent the
sole estimate of performance, provide points where
threats become engageable, or determine when to use
weapons�platform based sensors e¤ ectively in an en-
gagement, etc... No signi�cant advances have been
proposed to analytically characterize performance or
at least bound performance of the Kalman �lter other
than the use of simple two or three state constant
gain �lters. This paper suggests methods for char-
acterizing �lter algorithms that can be used to bound
the advanced tracking algorithms that are used in a
single sensor or muli-sensor environment.

Keywords: Target Tracking, Estimation, Fusion, Con-
stant Gain Filters.

1 Introduction

Signi�cant advances have been made in the last forty
years in target tracking that have enhanced radar
based tracking well beyond Kalman�s publication of
the two papers that de�ne Kalman �ltering. At the
same time that signi�cant advancements techniques
have been proposed by theoreticians to deal with the
real problems of target tracking that the Kalman �lter
has proven inadequate to solve. However, no signi�cant
advances have been proposed to analytically character-
ize �lter performance or at least bound performance of
these �lters other than the usage of simple two and
three state constant gain �lters. This is a problem
for many applications of radar and sensor based �l-
tering, because system performance characterization
cannot depend on simulations to estimate performance
on the �y, so to speak, or to provide points when
threats become engageagble, or to determine when to
use weapon�s platform based sensors e¤ectively in an
engagement, etc.
The cost of a statistically signi�cant sampling the

statistical universe in which a weapons-sensor plat-
forms exist is prohibitive due to the expanse of simula-
tion time required to achieve adequate sampling which
has signi�cant �nancial cost. Thus, there is always
a need for analytical approaches to characterize the
interaction between �lters and the sensor operational

environment. The reasons for insistence on analytical
methods over pure simulation are many, but it is suf-
�cient to note that without useful rules of thumb, ap-
prentice engineers produce �lter design that are clearly
nonsense to those practitioners who have gained expe-
rience over many years with functioning �lters that
are correctly designed. These rules of thumb become
even more important in the multi-sensor fusion envi-
ronment, where the level of experience and history of
performance of the algorithms is limited. The general
characteristics that bound the performance of the fu-
sion algorithms are small compared to the statistical
universe that the algorithm will be operating in.
Thus, it would be valuable to be able to character-

ize tracking algorithm performance in the single sensor
and multi-sensor environment so that a useful charac-
terization of performance is available. This provides
the ability of a user to perform sanity checks of �l-
ter outputs for incorporation in the control loop of the
sensor-weapons platform and examine weapon e¤ec-
tiveness. This paper suggests some methods for char-
acterizing �lter algorithms that can be used to bound
the advanced tracking algorithms that are used in a
both a single sensor multi-sensor environments. In ad-
dition, this paper attempts to throw down the gauntlet
to other practitioners to present methods of their own
on some future occasion.

2 Constant Gain Filters

The tracking equations for the �� � �lter (the neces-
sary background is found in the books by Bar-Shalom
[2] and Blackman [4]) consist of two parts: prediction
equations, which are given by

Xp(k) = AXs(k � 1) (1)

where

Xp(k) =

�
xp(k)
vp(k)

�
(2)

A =

�
1 T
0 1

�
(3)

and smoothing equations, which are given

Xs(k) = FXs(k � 1) +Gxm(k) (4)
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where

Xs(k) =

�
xs(k)
vs(k)

�
; (5)

F =

�
1� � (1� �)T
� �
T 1� �

�
; (6)

and

G =

�
�
�
T

�
: (7)

� xs(k) = smoothed position at the k-th interval

� xp(k) = predicted position at the k-th interval

� xm(k) = measured position at the k-th interval

� vs(k) = smoothed velocity at the k-th interval

� vp(k) = predicted velocity at the k-th interval

� T = radar update interval or period

� �; � = �lter weighing coe¢ cients

The question of the selection of �lter coe¢ cient values
and the relationship between the coe¢ cients used by
tracking �lters to determine pointing commands for a
tracking radar dates back at least as far as work by
Sklansky [16]. Sklansky proposed performance mea-
sures including stability, transient response, noise and
maneuver error as a function of the dynamic parame-
ters � and �. All of the work was based on a frequency
domain or z-transform analysis. Benedict-Bordner[3]
proposed a relationship between � and � based on a
pole-matching technique that combined transient per-
formance and noise reduction capability. Analysis per-
formed by Simpson [15], Neal, and Benedict [14] ex-
tended this analysis to the ���� �lter. Later, much
of this work was summarized in the open literature by
Kalata [11]. A summary of subsequent developments
in the literature to 1992 is found in Kalata [11] with
some additional work since then found in Gray [7] ,
and in the open literature.
There are several di¤erent dynamics models that

lead to an � � � �lters with di¤erent statistical and
performance attributes. While all �lters have the same
noise reduction ratios for position and velocity, they
have di¤erent transient responses or bias depending
on which threat model one uses. In matrix form, the
predicted update is (note this model lumps maneuver-
ability uncertainty in to the velocity component)

X(k + 1) = �X(k) + 	 ~w(k); (8)

while the measurement model in matrix form is

z(k + 1) = HX(k + 1) + en(k + 1); (9)

where

	 =

�
0
1

�
; (10)

� =

�
1 T
0 1

�
; (11)

H =
�
1 0

�
; (12)

X(k) =

�
x(k)
v(k)

�
; (13)

which is termed Model 1 for the form of 	. An-
other approach to modeling maneuver uncertainty is
to incorporate it into both the position and velocity
prediction components: in matrix form (Model 2)

X(k + 1) = �X(k) + 	2 ewa(k) (14)

where

	2 =

�
T 2=2
T

�
; (15)

� =

�
1 T
0 1

�
; (16)

X(k) =

�
x(k)
v(k)

�
; (17)

and H is the same as before. In [8], a method is devel-
oped for solving the Lyapunov equations for these type
of models. For the steady state performance, the noise
reduction ratios are the position (Kx), velocity (Kv),
and position-velocity cross term (Kxv) which are given
as

Kx =
2�2 + �(2� 3�)

D
; (18)

Kv =
2�2

DT 2
; (19)

Kxv =
�(2�� �)
DT

; (20)

where D = �(4 � 2� � �). For Model 2, the noise
reduction ratio for the position and the noise reduc-
tion ratio for the velocity are given as before while the
transient reduction ratios are

T 2x (0) =
(1� �)2T 4

2��
(21)

and

T 2v (0) =
T 2

4

�
2�2 � 3�� + 2�

��

�
: (22)

Note, this method applies to any constant gain �lter, so
higher state �lters can be characterized as well by solv-
ing the Lyapunov equation analytically. Thus, noise
covariance, both steady state noise reduction and tran-
sient response have analytical models which character-
ize performance by this method. The various transient
noise reductions are useful for estimating �lter per-
formance when un-modeled dynamic behavior occurs.
When combined with the noise reduction ratios, these
provide performance envelopes that bound �lter per-
formance. In addition to bounding performance, the
Jacobian of the noise reduction and transient perfor-
mance ratios allow one to determine one of four possi-
ble relationship (Benedict-Bordner, Kalata [11], Con-
tinuous White Noise, and an unnamed one) between
the �lter coe¢ cients, e.g. � = � (�) as discussed in [9].
The other aspect of �lter design is selection of the

�lter gains. This can be accomplished by introduc-
ing a cost function methodology. A function of mean
squared error is taken to be the arbitrator of perfor-
mance. While mean square is widely accepted, other



normed distance measure could be used. A mean
squared cost function can be formed by a combination
of noise reduction and �lter response to an un-modeled
term [9]. A normalized cost function (JN ) (normalized
means the mean squared error equals the normalized
cost times the normalization constant N which for the
steady state velocity cost function is

�
�2

T 2

�
). In gen-

eral, all cost functions are of the form

JN (�; �) = f (�; �) + g (�; �) �
2; (23)

where f; g are functions of � and � that depend on
which Model 1 is being considered and � is (a0 is
the un-modeled acceleration and � is the measurement
noise)

�2 =
a20T

4

�2
: (24)

where a0 is the un-modeled acceleration. A normalized
cost function based on velocity noise reduction ratio
and the Model 2 velocity transient noise reduction
ratio is

JVN (2; �; �) =
2�2

�(4� 2�� �) + �
V
2 (�; �)�

2 (25)

where

�V2 (�; �) =
(1� �)2
2��

: (26)

A cost function based on position noise reduction ratio
and the Model 2 position transient noise reduction
ratio is

JPN (2; �; �) =
2�2 � �(3�� 2)
�(4� 2�� �) + �P2 (�; �)�

2; (27)

where

�P2 (�; �) =
2�2 � 3�� + 2�

��
: (28)

Another combination for a possible cost functions
based on the steady state lags can be achieved by com-
bining the position noise reduction ratio and position
lag which gives,

JPN (S; �; �) =
2�2 � �(3�� 2)
�(4� 2�� �) + l2x�

2; (29)

where

lx =
1� �
�

; (30)

while the steady state normalized velocity lag cost
function is given by:

JVN (S; �; �) =
2�2

�(4� 2�� �) + l
2
v�

2; (31)

where

lv =
�

�
� 1
2
: (32)

The acceleration bias of the smoothed velocity re-
sponse of the �lter or bias is given by:

Lv = a0T lv = a0T� (33)

where the velocity lag coe¢ cient is de�ned as � . The
acceleration bias of the smoothed position response �l-
ter is

Lx = a0T
2lx; (34)

where the position lag coe¢ cient is de�ned as

lx =
1� �
�

� 1

�
� � � 1

2
: (35)

Note both � and � can always be written in terms of
lag coe¢ cients as

� =
2

2 (lx + �) + 1
; (36)

and

� =
(2� + 1)

2 (lx + �) + 1
; (37)

so �
� �

1
2 = � which does not depend on which relation-

ship one chooses between � and �. The noise reduction
ratios expressed in the lag form can be expressed as

Pv (lx; �) =
2

(2lx + �)(2� + 1)
; (38)

and

Px (lx; �) =
(2�2 + 2lx + �)

(2lx + �)(2� + 1)
(39)

For the Model 2 transient terms we have

�P2 (�; �) =
2
�
2�2 + 2lx + �

�
(2� + 1)

(40)

and

�V2 (�; �) =
l2x

(2� + 1)
: (41)

Examining the �lter coe¢ cient relationships in terms
of the velocity lag coe¢ cient � , gives several in-
teresting results. For each of the �lter coe¢ cient
relationships;we can express the �lter coe¢ cients in
terms of the lag � coe¢ cient form (e.g. the form that
depends just on � and not lx). The velocity lag is the
same for all three coe¢ cient relationships, but lx(�) is
di¤erent. Also, only for the Kalata relationship does
lx(�)
�!0

! 0, the others don�t. Also if we de�ne � 0 = T� ,

then if we replace � with �
T and then replace T with

an arbitrary update interval Tk and still have [13]

�k = 1�
�2

(Tk + �)
; (42)

and

�k =
2Tk

2

(Tk + �)
: (43)

Thus the Kalata �lter coe¢ cient relationship is pre-
served for arbitrary aperiodic updates Tk, which main-
tains the nominal �lter gains and preserves the �lter
coe¢ cient relationship. The lag characteristics sug-
gest a di¤erence between the properties of the �lter
coe¢ cient relationships based on position lag, which
suggests that the Kalata relationship is preferred in
our multi-platform application because of communica-
tion and computation delays that are mitigated for the



Kalata relationship only. Once a particular �lter coef-
�cient relationship is chosen � = � (�), the cost func-
tion can be expressed in terms of � . The cost function
can then be minimized to give � = � (�) and hence
� = � (�).
Thus �lter performance can be expressed in a

tractable form based on one design parameter �. Since
all of this can be accomplished using a minimum mean
square approach, a very good characterization of a
single �lter boundaries exists based on an analytical
characterization, provided a good estimate of � exists.
Thus, the ability to match any single model Kalman
�lter performance to within a few percent exists (Dale
Blair� private communication). Early work on extend-
ing these concepts to three state �lters are found in
[15] and [14]; but the methods presented here illus-
trated by the � � � �lter are easily extended to any
multiple-state constant gain �lter. Furthermore, the
label constant gain for the �lter is a bit miss-leading.
Since � = � (�), and we can always update an esti-
mate of � as frequently as necessary up to including
the sensor update rate to maintain desired track ac-
curacy. So designing a �lter this way provides a tight
bound of performance relative to the single stage �l-
ter one is trying to arrive at a bound performance for.
For multiple model �lters, the situation becomes more
complicated.
For a multiple model �lter, such as the Interacting

Multiple Models (IMM), the analytical approach is also
helpful. Many tracking simulations are run using the
IMM with two models: constant velocity and nearly
constant velocity, or nearly constant velocity and con-
stant acceleration. It is di¢ cult to decide which tran-
sition matrix is optimal, but it is clear that certain
choices are de�nitely sub-optimal. Matrices near those
suggested by the sojourn time calculation behave well.
However, while perturbing the matrix a small amount
away from the suggested values does result in a change
in performance, it is di¢ cult to decide whether the
change is for the better, since performance is not mea-
sured by one number, but by a balance of competing
interests. The results obtained imply that having three
models is not necessary except in unusual cases. Also,
the values of the o¤-diagonal elements do not matter,
except for the requirement that the rows sum to one.
Recall the IMM algorithm consists of six steps:

1. Weights update:

�ijj(k � 1jk � 1) =
1

cj
pij�i(k � 1) (44)

This is a calculation of the probability that model
i was in e¤ect at time k � 1, given that model
j is in e¤ect at time k. In the above equation,
the value cj is a normalizing constant, pij is the
probability of a transition from model i to model
j, and �i(k � 1) is the probability that model i
was in e¤ect at time k � 1.

2. Mix input estimates and covariance matri-

ces:

bx0j(k�1jk�1) =X
i

bxi(k�1jk�1)�ijj(k�1jk�1)
(45)

P 0j(k � 1jk � 1) =X
i

�ijj(k � 1jk � 1) � fP i(k � 1jk � 1)+�bxi(k � 1jk � 1)� bx0j(k � 1jk � 1)���bxi(k � 1jk � 1)� bx0j(k � 1jk � 1)�0 g
Each �lter produces an estimate of position, and
if the �lter were operating alone, that estimate
would be used during the next iteration as an ini-
tial value. In the IMM algorithm, these estimates
are mixed together, so that the input to �lter j is
the estimate of the position most likely at time
k � 1, given that model j is in e¤ect at time k.

3. Apply �lters:

Now the estimates and covariance matrices calcu-
lated in the step before, and the observation taken
at time k, are used as input to the Kalman �lters.
Each �lter behaves normally at this point.

4. Compute model likelihood functions:

�j(k) = P (z(k)jMj(k); Z
k�1) (46)

The likelihood function will be used to update the
probabilities of the various models. The likeli-
hood of model j at time k is de�ned to be the
probability of observing the value that was actu-
ally observed, given the previous history and the
assumption that model j was in e¤ect at time k.

5. Compute model probabilities:

�j(k) =
1

c
�j(k)

X
i

pij�i(k � 1) (47)

This calculation represents using the observation
at time k to update of the probability of each
model being in e¤ect. The value c is a normalizing
constant.

6. Compute updated state estimate and co-
variance matrix:

bx(kjk) =X
i

bxi(kjk)�i(k); (48)

P (kjk) =
X
i

�i(kjk)fP i(kjk) +
�bxi(kjk)� bx(kjk)��

�bxi(kjk)� bx(kjk)�0 g:
(49)

This calculation is only necessary if an output of a
composite estimate and covariance matrix is desired.
These values are not used elsewhere in the algorithm.



The Kalman �lter steps can be replaced with two
di¤erent �lter models using di¤erent analytical models
based on either transient or steady state performance.
For a three model case, one would use a three state an-
alytical �lter. Noting that for the IMM algorithm, the
matrix [pij ] calculates the model probabilities for the
�nal output. The existence of this matrix stems from
a representation of the target�s maneuvers as transi-
tions from state to state in a Markov chain. Thus, it
makes sense to apply Markov theory in the analysis
of this problem. In a Markov chain, � i is the sojourn
time, that is, the expected amount of time continuously
spent in state i, and is given by

� i =
1

1� pii
: (50)

This follows by noting [5]:

E(Time in ij State at time 0 is i) = 1

1� pii
: (51)

Thus, the IMM �lter performance can be viewed as
a weighted combination of individual analytical �lters
with the weights based on the sojourn time of a par-
ticular �lter. While not tested yet, it is expected that
this should yield fairly accurate estimate of IMM per-
formance boundaries and will be the subject of a future
publication.

3 Fusion Algorithms

In order to improve the quality of the state estimate,
local tracks or data can be communicated from the sen-
sors�platform to a central site for the purpose of esti-
mation fusion. The results of this paper apply to an
arbitrary communication rate. The sensor platforms
can communicate their data/track after every update,
after a given number of updates, or after every time
period. Communication delays exist between the sen-
sor platforms and the fusion center. Let t = tk�1 be
the last time the fusion center performed a track fusion
and let tk = tk�1 + Tf be the time of the next fusion
time. The period Tf is an adaptive design parameter.
It can be as small as the time it takes to receive two
tracks from two di¤erent sensor platforms or as long
as the time it takes to receive as many tracks as the
total number of sensors in the network. The value of
Tf mainly depends on the priority given to the track
fusion task which depend on the application at hand.
The number n of data/tracks to be fused during the
interval [tk�1; tk] is an arbitrary number between 2
and m, where m is the number of senors used. Be-
cause of the di¤erence in communication delays, some
of the validated tracks may arrive out-of- sequence. To
deal with the out-of- sequence tracks without special
processing, all the tracks that arrive at the fusion cen-
ter during the time [tk�1; tk] after removing redundant
tracks, are fused simultaneously. The asynchronous
multi-sensor track fusion problem can be stated as fol-
lows:

Given a number of asynchronous valid tracks,
fXi(tki jtki),Pi(tki jtki)g, i = 1; 2; :::; n, that arrive at
the fusion center during the time interval [tk�1; tk],
�nd the best estimate in the minimum mean square
sense of the system state at time tk when it is com-
puted according to the fusion rule.

Xf (tkjtk) =
nX
i=1

Li(tki)Xi(tki jtki) (52)

where the Li�s are unknown weighting matrices to be
determined. The error of the fused track at time tk =
kTf is

~Xf (tkjtk) = Xf (tkjtk)�X(tk) (53)

Using the system dynamics and the fusion rule gives

~Xf (tkjtk) =
nX
i=1

Li ~Xi(tki jtki) +
"

nX
i=1

[Li�(tki ; tk)� I ]
#
�

X(tk)�
nX
i=1

Li�(tki ; tk)W
tk
tki

(54)

If all the local �lters are unbiased, then"
nX
i=1

[Li�(tki ; tk)� I ]
#
= 0; (55)

so the fused track is unbiased if

nX
i=1

Li�(tki ; tk) = I (56)

This represents the �rst constraint on the choice of the
weighting matrices. Therefore,

Ln = �(tk; tkn)�
n�1X
i=1

Li�(tki ; tkn): (57)

The error covariance matrix of the fused track
can be de�ned as

Pf (tkjtk) = Ef ~Xf (tkjtk) ~Xf (tkjtk)
0
g (58)

which allows determination of the weights Li which de-
�ne the optimal asynchronous track fusion �lter. Fur-
ther details are found in [1]
Theorem 1: The error covariance matrix of the

fused track using the fusion rule is given by

Pf (kjk) =
n�1X
i=1

n�1X
j=1

LiMijL
0
j+

n�1X
i=1

LiNi+
n�1X
i=1

NiL
0

i+Mn

(59)
Proof: See [1].
Theorem2 : The minimummean square solution of

the asynchronous track fusion problem using the fusion
rule is given by

Xf (tkjtk) =
nX
i=1

LiXi(tki jtki) (60)



Pf (tkjtk) = LML
0
+ LN +N

0
L
0
+Mn (61)

where

[L1 L2 ::: Ln�1] = �N
0
M�1 (62)

Ln = �(tk; tkn)�
n�1X
i=1

Li�(tki ; tkn): (63)

Proof: See [1].
The reason for this example is that it is indicative

of all fusion algorithms, they are variations on a sim-
ilar theme. With the proper rede�nitions of matrices,
both track and data fusion amount to the same thing:
weighted (positive semi-de�nite and the sum is
normalized to one) combinations of data. The
results can be extremely complicated, di¢ cult to un-
derstand, di¢ cult to predict in terms of performance,
and di¢ cult to determine the algorithm�s underlying
correctness, but they have the same underlying math-
ematical form when understood properly. Given this
observation, an alternative suggests itself as a means of
understanding these types algorithms based on maxi-
mum entropy analysis to interpret the probabilities as
the solution to a maximum entropy problem. There are
two approaches to developing this methodology which
will now be review.

4 Maximum Entropy Procedure
As A Means Of Understand-
ing Fusion Schemes

The degree of uncertainty (which is equivalent to the
surprise value) in the information is de�ned as the en-
tropy:

S[jpi ;n] == �k hpj ln pi = �k
nX
i=0

pi ln pi; (64)

Most applications do not permit one to measure the
probabilities, pi; associated with a physical variable,
f(xi), instead the expected value, hf(x)i ; is measured.
Probabilities are connected to expected values by us-
ing the formula for hf(x)i. The goal of a maximum en-
tropy procedure is to �nd an assignment to the proba-
bility vector jpi subject to the following two conditions:
Condition 1: jpi is normalized: h1jpi = 1:Condition
2: Known assignment of the means ( r = 1; 2; 3:::m):
hpjgr (jxi)i = hgr(jxi)i = �r.
These two conditions provide two equations, so

(n � 2) more are needed. One approach is to �nd
an assignment of probabilities that maximizes the en-
tropy. These two condition plus the principle [10]:
"The distribution jpi that maximizes the uncertainty
in the expected value subject to the constraint of the
available information� provides such an assignment.
The method of Lagrange undetermined multipliers is
a standard method for solving an optimization prob-
lem subject to constraints. The function one wants to

maximize is the entropy, so it is adjoined to the free
parameters (Lagrange undetermined multipliers) times
the equations for the constraints to form a Lagrangian,
which for entropy maximization is (take k = 1)

L = �hpj ln pi � �0 (h1jpi � 1) (65)

�
mX
r=1

�r [hpjgr (jxi)i � �r] :

To minimize with respect to the probabilities, one com-
putes the particular state hpjeii such that @L

@hpjeii is a
minimum:

@L

@ hpjeii
= 0 = ln pi + 1 + �0 +

mX
r=1

�rgr (xi) : (66)

Solving for the state�s probability hpjeii = pi gives the
probability assignment as

hpjeii = e�(�0+1+
Pm

r=1 �rgr(xi))

= e[�(�0+1+h�jg(xi)i)]:

(67)

Substituting probabilities into Condition 1 gives �rst
Lagrange undetermined multiplier as

e(�0+1) =
nX
i=1

e(�
Pm

r=1 �rgr(xi))

=
nX
i=1

e�h�jg(xi)i: (68)

Other Lagrange undetermined multipliers are ob-
tained by substituting probability assignment into
Condition 2 in the Appendix,

hpjgr (jxi)i =
nX
i=1

e�h�jg(xi)igr(xi) = �re
(�0+1) , (69)

which solves the problem of assigning the probabilities.
De�ne the partition function as Z as

e(�0+1) = Z; (70)

The Hamiltonian H is de�ned as

Hi =
mX
r=1

�rgr (xi) ; (71)

= h�jg(xi)i : (72)

The probability assignment becomes

hpjeii = pi =
exp(�Hi)

Z
; (73)

which is a familiar expression to physicists.
A general model for any process that can be viewed

as a weighted graph (communication or fusion network
for example), e.g. the connected graph has a weight
wij associated with each arc (i; j), we can associate a
number that can be de�ned as a probability, or as a
fusion rule for di¤erent sources or as a multiple model



�lter with the data drawn from di¤erent sources, by
the assignment :

Pij =

(
wijP
j wij

if (i; j) is an arc

0 if (i; j) is not an arc
: (74)

So instead of interpreting �ixi(G) as the Lagrange
undetermined multiplier times some property of the
graph, it can be interpreted as interaction potential
between components i and j. The �i is interpreted as
scaling parameter �, a �eld coupling parameter, or the
inverse temperature. It is possible to posit a variety of
interaction models, work out their consequences, and
work out the equivalent probability distributions. The
simplest form for the Hamiltonian is when the expected
number of edges hmi is known, so H(G) becomes

H�(G) = �m(G): (75)

This model is trivial, so next consider the simplest
model where the adjacency matrix A (G) has compo-
nents aij

aij =

�
1 if i is connected to j
0 if i is not connected to j

: (76)

The number of edges m is

m(G) =
X
i < j

aij (G) ; (77)

therefore the Hamiltonian is given by:

H(G) = �
X
i < j

aij (G) : (78)

The partition function (PF) is

Z�(G) =
X
G

exp(�H(G))

= (1 + exp (��))(
n
2) : (79)

In general it is possible to replace �i with �ij ; so
the Hamiltonian is H(G) =

P
i < j �ijaij(G) while the

Partition function is

Z~�(G) =
Y
i < j

�
1 + e��ij

�
: (80)

The free energy, which is the logarithm of the partition
function, is

F� = � ln (Z�(G))
= �

X
i < j

ln
�
1 + e��ij

�
:

(81)

The �rst moment is

hfi = dF�
d�

=
1

(1 + e�ij )
; (82)

while the standard deviation is

�2f =
d2F�
d�2

= � e�ij

(1 + e�ij )
2 : (83)

In general, can specify interaction Hamiltonian as

H =
X
i < j

�ij�ij (84)

where �ij is parameter that couples each edge together
and the degree sequence satis�es �i =

P
j �ij . The

partition function is

Z =
Y
i<j

�
1 + e��ij

�
: (85)

Free energy is

F = �
X
i < j

ln
�
1 + e��ij

�
: (86)

Note probability of an edge between edge i and j is the
expected number of the degree sequence, then

pij = h�iji =
@F

@�ij
=

1

(1 + e�ij )
: (87)

Underlying basis for the parameterization that gives us
Bernoulli model with

P (G) = pmij (1� pij)(
n
2)�m: (88)

A term
P

i Ci�i to the Hamiltonian without changing
the probability model for the graph while allowing us
to relate hCii to the characteristic of the graph inter-
action. Thus, this work can be extended to social net-
works [6],[17], [18], by broadening it to include network
modeling of interest. Any interaction model that can
be cast into the above form is a hidden Markov model.
We also note that any weighting scheme used in a fu-
sion algorithm for a tracking �lter can be cast in the
form of an interaction network model, so

1. In principle, any probability assignment model
can be thought of as a physical interaction model,
so one can bring to bear the full power of statisti-
cal physics on it.

2. The translation between physics interaction
Hamiltonian to graph theory probability models
needs to be made more transparent.

3. This approach applies to any type of network that
can be modeled as a graph with a normalized or
zero/one entries for the adjacency matrix.

Some areas for further development of the interac-
tion model method include:

1. While this �eld has rich predictive capability, the
question is usefulness when applied to speci�c
problem domains.

2. Time evolving graphs have the potential to be a
huge application area with many di¤erent types of
domain applications.

3. This technique can be applied to �ow networks by
using a non-symmetric matrix.



4. An exponential probability model is equivalent
to Markov Model for time evolution. Deviations
from the exponential model can be thought of as
"memory" in the system under consideration, so
the question is what role memory plays in the sys-
tem interaction model.

In creating a network that fuses weighted informa-
tion from di¤erent sources we are creating the equiv-
alent of a physical interaction system that has an un-
derlying physics that we can strive to understand and
exploit. Thus a fusion algorithm when looked at this
way is physics model based on interpreting our weigh-
ing of the data from di¤erent sources as an underlying
interaction model.

5 Conclusions

Any assignment of probabilities can always be viewed
as the solution to a Bayesian Maximum Entropy prob-
lem. Given that is the case, then the question can be
asked: "What is the Maximum Entropy problem that
an assignment of fusion weights is the answer to?" For
other examples not related to this question, see the
suggestive paper by Kesavan [12] Being able answer
this question for various fusion algorithms, would al-
low us classify them in the same fashion. This would
lead to an ordering of algorithms in terms of the com-
plexity of the problem they solve. This will be dealt
with in a subsequent paper. Our ideal has been to
suggest new means to understand the strengths and
limitations shared information based on tracking data
provided from sensor networks. The goal is to �nd bet-
ter means for sharing resources, so information can be
allocated across all or part of the platforms within the
network based on a maximum entropy viewpoint.
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